I*-CONVERGENCE
MARTIN MACAJ AND MARTIN SLEZIAK

ABSTRACT. In this paper we introduce Z*-convergence which is a common generalization of
the Z*-convergence of sequences, double sequences and nets. We show that many results that
were shown before for these special cases are true for the Z-convergence, too.

1. HISTORICAL BACKGROUND AND INTRODUCTION

The main topic of this paper is convergence of a function along an ideal. As the dual notion
of the convergence along a filter was studied as well, let us start by saying a few words about
the history of this concept.

It was defined for the first time probably by Henri Cartan [6] (see also [B, p.71, Definition 1]).
Although the notion of a limit along a filter was defined here in the maximal possible generality
— the considered filter could be a filter on an arbitrary set and the limit was defined for any map
from this set to a topological space — the attention of mathematicians in the following years was
mostly focused to two special cases.

In general topology the notion of the limit of a filter on a topological space X became one of
the two basic tools used to describe the convergence in general topological spaces together with
the notion of a net (see [12} Section 1.6]).

Some authors studied also the convergence of a sequence along a filter. This notion was redis-
covered independently by several authors, we could mention A. Robinson [34], A. R. Bernstein
[] (these authors used ultrafilters only) or M. Katétov [21].

The definition of the limit along a filter can be reformulated using ideals — the dual notion to
the notion of filter. This type of limit of sequences was introduced independently by P. Kostyrko,
M. Macaj and T. Salat [22] and F. Nuray and W. H. Ruckle [32] and studied under the name
T-convergence of a sequence by several authors (see also [10, 23] 24]). The motivation for this
direction of research was an effort to generalize some known results on statistical convergence.
Since the notions that we intend to generalize in this paper stem from one of the results on the
statistical convergence, let us describe in more detail how they evolved.

Motivated by a result of T. Salat [35] and J. A. Fridy [I5] about statistically convergent
sequences, the authors of [22] also defined so called Z*-convergence (a sequence ()52 ; being
T*-convergent to x provided that there exist M € F(Z) such that the corresponding subsequence
converges to x) and asked for which ideals the notions of Z-convergence and Z*-convergence
coincide. This question was answered in [24] where the authors showed that these notions
coincide if and only if the ideal Z satisfies the property AP, which we call AP(Z,Fin) here (see
also [23], 32]).

Later the analogues of the notion of Z*-convergence were defined and similar characterizations
were obtained for double sequences (see [8] [25]) and nets (see [29]).

In this paper we define Z®-convergence as a common generalization of all these types of Z*-
convergence and obtain results which strengthen the results from the above papers. In the last
we also point at neglected relation between the Z-convergence of sequences and double sequences.

Although our motivation arises mainly from the results obtained for sequences, we will work
with functions. One of the reasons is that using functions sometimes helps to simplify notation.
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Another reason is that we tried to obtain the maximal possible generality allowed by the tools
we are using.

2. NOTATION AND PRELIMINARIES

In this section we recall some notions and results concerning the Z-convergence.
If S is a set, then a system Z C P(S) is called an ideal on S if it is additive, hereditary and
non-empty, that is,
(i) 0 eZ,
(i) ABeZ=AUBE€TI,
(ii) AcZTANBCA= Bel.
An ideal on S is called admissible if it contains all singletons, that is, {s} € Z for each s € S.
An ideal 7 on S is called proper if S ¢ I, a proper ideal is called mazimal if it is a maximal
element of the set of all proper ideals on S ordered by inclusion. It can be shown that a proper
ideal 7 is maximal if and only if (VAC S) AeZ Vv S\AeT.
We will denote by Fin the ideal of all finite subsets of a given set S.
The dual notion to the notion of an ideal is the notion of a filter. A system F C P(S) of
subsets of S is called a filter on S if
(i) S e F,
(ii) ABeF=ANBEeF,
(iii) Ae FABDA= BeF.
A filter F is called proper if O ¢ F.
The dual notion to the notion of a maximal ideal is the notion of ultrafilter.
A system B C P(S) is called filterbase if
(i) B#0,
(ii) A, BeB= (3CeB)CCANB.
If B is a filterbase, then the system

F={ADB;BehB}
is a filter. It is called filter generated by the base B.
For any ideal Z on a set S the system
F(I)={X\A;AcT}

is a filter on S. It is called the filter associated with the ideal Z. In a similar way we can obtain
ideal from any filter. This yields a one-to-one correspondence between ideals and filters on a
given set.

Definition 2.1. Let Z be an ideal on a set S and X be a topological space. A function f: S — X
is said to be T-convergent to x € X if

f7HU) ={s € S; f(s) e U} € F(T)

holds for every neighborhood U of the point .
We use the notation
Z-lim f = x.
If S = N we obtain the usual definition of Z-convergence of sequences. In this case the notation

I-limx,, = z is used.
We include a few basic facts concerning Z-convergence for future reference.

Lemma 2.2. Let S be a set, let T, 77 and I be ideals on S and let X and Y be topological
spaces.

(i) IfZ is not proper, that is, if T = P(S), then every function f: S — X converges to each
point of X.
(ii) If Zn C Iy, then for every function f: S — X, we have

Ii-limf=x implies Zo-lim f = x.
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(iii) If X is Hausdorff and T is proper, then every function f: S — X has at most one
I-limat.

(iv) If g: X =Y is a continuous mapping and f: S — X is Z-convergent to x, then go f is
T-convergent to g(x).

(v) IfT is a mazimal ideal and X is compact, then every function f: S — X has an Z-limit.

Let us note that the above properties are more frequently stated for filters rather than ideals.
Moreover, the property is in fact a characterization of Hausdorff spaces and the property
(v) is a characterization of compact spaces.

3. TF-CONVERGENCE

3.1. Definition and basic results. As we have already mentioned, we aim to generalize the
notion of Z*-convergence of sequences, introduced in [22] for sequences of real numbers and gen-
eralized to metric spaces in [24]. Since we are working with functions, we modify this definition
in the following way:

Definition 3.1. Let Z be an ideal on a set S and let f: S — X be a function to a topological
space X . The function f is called Z*-convergent to the point  of X if there exists a set M € F(T)
such that the function g: S — X defined by

) f(s), ifseM
g(s)—{x’ ifs¢ M

is Fin-convergent to x. If f is Z*-convergent to x, then we write Z*-lim f = x.

The usual notion of Z*-convergence of sequences is a special case for S = N. Similarly as for
the Z-convergence of sequences, we write Z*-lim z,, = x.

In fact, the Z*-convergence was defined in [22] in a slightly different way — the Fin-convergence
of the restriction g|ys was used. It is easy to see that these two definitions are equivalent. Our
approach will prove advantageous when using more complicated ideals instead of Fin.

In the definition of Z®-convergence we simply replace the ideal Fin by an arbitrary ideal on
the set S.

Definition 3.2. Let K and Z be ideals on a set .S, let X be a topological space and let = be
an element of X. The function f: S — X is said to be Z¥-convergent to x if there exists a set
M € F(Z) such that the function g: S — X given by

) f(s), ifseM
g(s)_{x, its¢ M

is KC-convergent to x. If f is Z"-convergent to z, then we write Z%-lim f = .

As usual, in the case S = N we speak about Z*-convergence of sequences and use the notation
I limz,, = x.

Remark 3.3. The definition of Z¥-convergence can be reformulated in the form of decomposi-
tion theorem. A function f is Z®-convergent if and only if it can be written as f = ¢g + h, where
g is K-convergent and h is non-zero only on a set from Z. An analogous observation was made
in [7] for the statistical convergence of sequences and in [31] for the statistical convergence of
double sequences.

Remark 3.4. A definition of Z®-convergence following more closely the approach from [22]
would be: there exists M € F(Z) such that the function f|a is K|M-convergent to x where
KIM ={ANM;A € K} is the trace of £ on M. These two definitions are equivalent but the
one given in Definition [3.2]is somewhat simpler.

One can show easily directly from the definitions that K-convergence implies ZX-convergence.

Lemma 3.5. If 7 and IC are ideals on a set S and f: S — X is a function such that K-lim f = x,
then I -lim f = «.
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Using Lemma and the definition of Z®-convergence we get immediately

Proposition 3.6. Let 7, 11, o, K, K1 and K3 be ideals on a set S such that Ty C Iy and
K1 C Ko and let X be a topological space. Then for any function f: S — X we have

IF-lim f =2 = ¥ -lim f = =,
T lim f =z = T lim f = .

In what follows we are going to study the relationship between the Z-convergence and Z%-
convergence. In particular, we will specify the conditions under which the implications

(3.1) T limf == = Z-lim f = x,
(3.2) Z-lm f =z = ¢ lim f = x,
hold.

We start with the easier implication (3.1]). In the case K = Fin this implication is known to
be true for the admissible ideals, that is, for ideals fulfilling I C Z. We next show that the same
is true in general.

Proposition 3.7. Let Z,K be ideals on a set S, let X be a topological space and let f be a
function from S to X.
(i) If the implication (3.1) holds for some point x € X which has at least one neighborhood
different from X, then IC C Z. Consequently, if the implication (3.1) holds in a topological
space that is not indiscrete, then K C I.
(ii) If K C I, then the implication (3.1]) holds.
Proof. Suppose that K ¢ Z, that is, there exists a set A € £\ Z. Let 2 be a point with a
neighborhood U & X and y € X \ U. Let us define a function f: S — X by

£t) = {x ift ¢ A,

y otherwise.

Clearly, K-1lim f = z and thus by Lemma we get ZN-lim f = z. As fTH(X\U)=A¢ T,
the function f is not Z-convergent to z
Let X be any topological space, z € X and f: S — X. Let £ C Z and Z%-lim f = z. By
the definition of Z®-convergence there exists M € F(Z) such that
C:=fYX\UnMcKkcCT
for each neighborhood U of the point x. Consequently,
FFUX\U)C(X\M)uCeT
and thus Z-lim f = x. O

3.2. Additive property and Z*-convergence. Inspired by [24] and [28] where the case K =
Fin and S = N is investigated, we now concentrate on an algebraic characterization of the ideals
7 and K such that the implication holds for each function f: .S — X. Before doing this we
need to prove some auxiliary results.

Definition 3.8. Let IC be an ideal on a set S. We write A Cx B whenever A\ B € K. If
A Ci B and B Cx A, then we write A ~¢ B. Clearly,

A~x B & AAB € K.

We say that a set A is K-pseudointersection of a system {A,;n € N} if A Cx A, holds for
each n € N.

In the case K = Fin we obtain the notion of pseudointersection and the relations C* and =*
which are often used in set theory (see [20, p.102]).

It is easy to see that using the symbols Cx and ~x can be understood as another way
of speaking about the equivalence classes of the subsets of S in the quotient Boolean algebra
P(S)/K.
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In the following lemma we describe several equivalent formulations of a condition for ideals 7
and I which will play crucial role in further study.

Lemma 3.9. Let Z and K be ideals on the same set S. The following conditions are equivalent:

(i) For every sequence (An)nen of sets from T there is A € T such that A, Cx A for all
n’s.

(ii) Any sequence (Fy)nen of sets from F(I) has a K-pseudointersection in F(T).

(iii) For every sequence (A,)nen of sets belonging to I there exists a sequence (Bp)nen of
sets from I such that Aj ~x B; for j € N and B = UjeN B; el

(iv) For every sequence of mutually disjoint sets (Ap)nen belonging to T there exists a se-
quence (By)nen of sets belonging to I such that A; ~x Bj forj € N and B = UjeN B; €
T.

(v) For every non-decreasing sequence Ay C Ay C --- C A, C ... of sets from T there
exists a sequence (Byp)nen of sets belonging to I such that A; ~x B; for j € N and
B=U;enBj€T.

(vi) In the Boolean algebra P(S)/K the ideal T corresponds to a o-directed subset, that is,
every countable subset has an upper bound.

Note that is just a dual formulation of . Similarly, (vi) is the formulation of in
the language of Boolean algebras. The equivalence of , , (v) can be easily shown by the
standard methods from the measure theory. Proof of the equivalence of the remaining conditions
is similar to the proof of Proposition 1 of [3], where the case K = Fin is considered. We include
the proof for the sake of completeness and also to stress that the validity of this lemma does not
depend on the countability of S or the assumption that K C 7.

Proof. :> Let Ay C Ay C --- C A, C ... be a non-decreasing sequence of sets from Z.
Since each A,, € Z, the condition (fij) yields the existence of a set A € T satisfying A,, Cx A for
n € N. Let B,, := AN A,,. Since B, C A, we have B,, € Z. Moreover, B,AA, = A, \ A €K,
thus B, ~x A,. Finally, B = UjeN B; C A €7, as required.

:> Let (An)nen be a sequence of sets belonging to Z. By there exists a sequence
(Bn)nen of sets from 7 such that for all n we have B,, ~x A, and A := {J,,cy Bn € Z. From
A,AB, € K and B, C A we get A,, Cx A, which proves . O

It is also easy to see that in condition it suffices to consider only sequences of sets from a
filterbase. This reformulation of can be sometimes easier to prove.

Definition 3.10. Let Z, K be ideals on a set S. We say that Z has the additive property with
respect to K, or more briefly that AP(Z, ) holds, if any of the equivalent conditions of Lemma

[3-9 holds.

The condition AP from [24], which characterizes ideals such that Z*-convergence implies Z-
convergence, is equivalent to the condition AP(Z,Fin). Let us note that ideals fulfilling this
condition are often called P-ideals (see for example [3] or [14]).

In the following two theorems we show that the condition AP(Z, K) is the correct generaliza-
tion of conditions AP from [24], [28] and [§]. In particular, as special cases of our results we
obtain Theorem 3.1 of [24], Theorem 8 of [29] and Theorem 2 of [§].

Although we do not consider arbitrary topological spaces, we feel that the restriction to the
first countable spaces is sufficient for most applications. For example, in [24] the authors work
only with metric spaces and in [28] the case that X is a first countable T}-space is considered.

Theorem 3.11. Let Z and KC be ideals on a set S and let X be a first countable topological space.
If the ideal T has the additive property with respect to IC, then for any function f: S — X the
implication (3.2) holds. In other words, if the condition AP(Z,KC) holds, then the T-convergence

implies the T" -convergence.

Proof. Let f: S — X be an Z-convergent function and let x = Z-lim f. Let B = {U,;n € N}
be a countable base for X at the point x. By the Z-convergence of f we have

71 (Un) € F(2)
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for each n, thus by Lemma 3.9 there exists A € F(Z) with A Cxc f~1(U,), that is, A\ f~1(U,) €
KC for all n’s.

Now it suffices to show that the function ¢g: S — X given by g|a = f|a and g[S\ 4] = {z} is
K-convergent to x. As for U,, € B we have

97 (Un) = (S\A)UfTH(Un) = S\ (AN [ (Un)),
and the set A\ f~1(U,) belongs to K, its complement g~ (U,,) lies in F(K), as required. O

Let us recall that a topological space X is called finitely generated space or Alexandroff space
if any intersection of open subsets of X is again an open set (see [1]). Equivalently, X is finitely
generated if and only if each point of x has a smallest neighborhood. Finitely generated T3-spaces
are precisely the discrete spaces.

Theorem 3.12. Let Z, K be ideals on a set S and let X be a first countable topological space
which is not finitely generated. If the implication (3.2)) holds for any function f: S — X, then
the ideal T has the additive property with respect to K.

Proof. Let x € X be an accumulation point of X which does not have a smallest neighborhood.
Let B ={U;;i € NU{0}} be a countable base at = such that U, 2 U,+1 and Uy = X. Suppose
we are given some countable family A,, of mutually disjoint sets from Z.

For each n € N choose an x,, € U,_1 \ U,,. Let us define f: S — X as

x, ifs€A,,
J(s) = {m if s ¢ Upen 4

We have f~1(X \ U,) = U;_, 4i € Z, hence Z-lim f = z. By the assumption, Z*-lim f = =,
which means that there is A € F(Z) such that the function g: S — X given by g|la = f|a and
g[S\ 4] = {z} is K-convergent to xz. This yields

X\ U) (UA)mAanJ(A NA)ek
i=1

From this we have A; N A € K, thus B; := A; \ A ~¢ A;.
Note that, at the same time

UBi= (UAi>\ACS\AeI.

ieN ieN
We have shown from Lemma O

Remark 3.13. Let us note that we have in fact proved a slightly stronger result: Whenever x
is an accumulation point of X such that there exists a countable basis at x, the point x does
not have a smallest neighborhood and the implication holds for each function f: S — X
which is Z%-convergent to x, then the ideal Z has the additive property with respect to K.

We next provide an example showing that Theorem [3.11] does not hold in general for spaces
which are not first countable.

Example 3.14. Pointwise Z-convergence of sequences of continuous real functions was studied
in [I8] and [I9]. It can be understood as convergence of sequences of elements of the space C(X)
of all real continuous function endowed with the topology of pointwise convergence. The authors
of [18, 19] defined and studied the Z-convergence property which, using our terminology, can be
formulated as follows: A topological space X has the Z-convergence property if holds in
the space Cp(X) for S =N and K = Fin.

It is known that Cp,(X) is first countable if and only if X is countable, see [30, Theorem 4.4.2].
Hence our Theorem yields that all countable spaces have the Z-convergence property for
every P-ideal Z. The same result was obtained in [I8, Corollary 1].

It was shown in [19] that R does not have Z-convergence property for any nontrivial analytic
P-ideal on N. (By trivial ideals we mean the ideals of the form Zo = {A C N; A C* C} for
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some C' C N.) Hence, C,(R) provides the desired counterexample, which works for a large class
of ideals on N. The definition of analytic ideals, more related results and many examples of
analytic P-ideals can be found, for example, in [13] [14].

To find a counterexample showing that Theorem [3.12] is in general not true without the
assumption that the space X is first countable we can use any space in which all Z-convergent
sequences are, in some sense, trivial.

Example 3.15. Let us recall that w; denotes the first uncountable ordinal with the usual
ordering. Let X be the topological space on the set w; U {w;} with the topology such that all
points different from w; are isolated and the base at the point wy consists of all sets U, = {5 €
X; B> a} for a < w;. Notice that if C' C wy is a set such that w; € C, then |C| = ¥;.

Now let Z be an admissible ideal on N and let a function f: N — X be Z-convergent to w;.
We will show that then there exists M € F(Z) such that f(x) = w; for each x € M, that is, f|n
is constant. Clearly, this implies that f is Z*-convergent.

For the sake of contradiction, suppose that each set M € F(Z) contains some point m such
that f(m) # w;. Since f~1(U) € F(T), for any neighborhood U of w; in X there exists m € N
with f(m) € U\ {w1}. Therefore for the set C' = {m € N; f(m) # w1} we have wy € f[C]. Since
f[C] C wy and it is a countable set contained in wy, this is a contradiction.

Now, by choosing an ideal Z which does not have the additive property AP(Z, Fin) we obtain
the desired counterexample.

4. EXAMPLES AND APPLICATIONS

We have already mentioned that our motivation for definition and study of Z®-convergence
was an effort to provide a common generalization to the notion of Z*-convergence which was
defined first for the usual sequences in [22] and later generalized for sequences of functions,
double sequences and nets in [16], [25] and [29], respectively.

In this section we show that the notion of the Z®-convergence is a correct generalization of
these notions, that is, all these notions are special cases of the Z*-convergence. We begin with
the notion of Z*-convergence of double sequences.

4.1. Double sequences. In the study of double sequences several types of convergence are
used. For our purposes, the following one is the most important.

Definition 4.1 ([2,33]). A double sequence (% )py ,—1 Of points of a topological space X is
said to converge to x in Pringsheim’s sense if for each neighborhood U of the point x

(Fk e N)(Ym > k)(Yn > k)xp, € U.

It is easy to see that the convergence in Pringsheim’s sense is equal to the Z-convergence along
the Pringsheim’s ideal Ty on N x N whose dual filter F(Z5) is given by the filterbase

By = {[m, 00) x [m,00);m € N}.

We will give a different description of this ideal in Example

Altogether four types of convergence of double sequences were studied in [2]. All of them can
be described as Z-convergences using appropriate ideals on N x N (see Figure . In fact, we
denote the Pringsheim’s ideal by Zs in order to be consistent with the notation of [2].

The Z*-convergence of double sequences studied in [25] and [§] is the same as ZZ2-convergence
in N x N. Therefore, as a special case of our Theorems and for S=NxNand K =1,
we obtain Proposition 4.2 of [25], and Theorems 3 and 4 of [§]. Note that in [25] and [§] only
the ideals containing Z, are considered, see Proposition [3.7]

4.2. Further examples. In order to avoid technical details we will define neither the notions of
pointwise and uniform Z*-convergence of a sequence of functions defined in [16], nor the notions
of the Z- and T*-convergence of nets defined in [29].

We just mention that, given an ideal £ on N, the uniform L*-convergence of a sequence of
functions defined on X is precisely the Z*-convergence for the ideal Z on X x N given by the
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FIGURE 1. Ideals from [2] illustrated by depicting typical sets from the filter-
base. Vertical lines represent the partition of N x N into countably many infinite
sets {i} x N.

filterbase {X x (N\ A); A € £} and the ideal K given by the filterbase {X x (N\ A); A € Fin}.
The pointwise L*-convergence can be obtained if Z is the ideal of all sets A C X x N such that
for each € X the z-cut A, := {n € N; (z,n) € A} belongs to £, and K consists of all sets such
that each A, is finite.

In both cases it can be shown that the condition AP(Z,K) is equivalent to the condition
AP(L,Fin). Hence our Theorems and imply that these two types of Z-convergence are
equivalent to corresponding Z*-convergence if and only if AP(L,Fin) holds. This observation
has been made already in [10].

Similarly, the concept of Z*-convergence of nets is a special case of Z*-convergence and
Theorem 12 of [29] can be obtained from our Theorems and by choosing the section
filter of the considered directed set for I (the definition of the section filter can be found, for
example, in [B p.60]).

4.3. Z-convergence of double sequences. We close this paper with an observation concerning
the Z-convergence of double sequences.

Notice that any bijection between sets S and T naturally gives rise to a bijection between
X% and X7, an isomorphism between Boolean algebras P(S) and P(T) and also to an isometric
isomorphism between linear normed spaces £, (S) and £ (T). It is easy to see that this corre-
spondence preserves also the properties related to the notion of Z-convergence. Hence results
about Z-convergence for a given set S do not depend on the natural (partial) ordering on the
set S in any way. Thus these results can be transferred to any set of the same cardinality.

We can use any bijection between N and N x N to relate results about sequences and double
sequences. It is interesting to note that several authors working in this area did not realize this
possibility.

The basic results on Z-convergence (such as additivity, multiplicativity, uniqueness of limit
in Hausdorff spaces) need not be shown again for double sequences, since they follow from the
analogous result for sequences; although the proofs are rather trivial in both cases. But there
are also some more interesting concepts that were defined for double sequences in a such way
that they are preserved by this correspondence. Namely, this is true for the notions of Z-Cauchy
double sequences, extremal Z-limit points (Z-limit superior and Z-limit inferior) and Z-cluster
points.

In this way, some results from the papers [9, 17, 26] [36] on the above mentioned concepts
can be obtained from the results of [10, 11l 23] 27]. Actually, the fact that a double sequence
is Z-convergent if and only if it is Z-Cauchy is shown in Proposition 5 of [I1] using a bijection
between N and N x N.

The above observation can also be used to get an alternative description the ideal Zs.

Example 4.2. A basic example of an ideal which does not have the property AP(Z,Fin) is the
ideal Z,,, given in Example 1.1.(g) of [24] and Example (XI) of [22]. It is defined as follows:
Suppose we are given any partition N = [J;_, D; of N into countably many infinite sets. A set
A C N belongs to Z,, if and only if it intersects only finitely many D;’s. Of course, choosing
different partitions of N can lead to ideals which are different, but equivalent from the point of
view of Z-convergence.
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FIGURE 2. Partitions of N x N defining the ideals Z; and Z5

We can also use any countable set instead of N. In particular, as observed in the proof of
Corollary 4 in [2], by choosing the partition of N x N into sets D; = {(n,i);n > i}U{(i,k); k > i}
we obtain the ideal Z in this way. Similarly, by using D; = {i} x N we get the ideal Z; of [2]
(see Figure . Thus the ideals Z7, Zo and Z,,, are essentially the same. In particular, this gives
an alternative proof that AP(Z,, Fin) and AP(Z;, Fin) fail, see []].
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